1. One can of frozen juice concentrate, when mixed with 4 1/3 cans of water, makes 2 quarts (64 oz) of juice. Assuming no volume is gained or lost by mixing, how many oz does a can hold?
 A. 8 B. 10 C. 12 D. 15 E. 18

2. Define the operation \(\Delta \) by \(a \Delta b = ab + b \). Find \((3 \Delta 2) \Delta (2 \Delta 3)\).
 A. 72 B. 73 C. 80 D. 81 E. 90

3. Trina has two dozen coins, all dimes and nickels, worth between $1.72 and $2.11. What is the least number of dimes she could have?
 A. 10 B. 11 C. 15 D. 18 E. 19

4. A bicycle travels at \(s \) feet/min. When its speed is expressed in inches/sec, the numerical value decreases by 16. Find \(s \). (1 foot = 12 inches)
 A. 12 B. 16 C. 18 D. 20 E. 24

5. Add any integer \(N \) to the square of \(2N \) to produce an integer \(M \). For how many values of \(N \) is \(M \) prime?
 A. 0 B. 1 C. 2 D. A finite number > 2 E. An infinite number

6. Sixteen students in a dance contest have numbers 1 to 16. When they are paired up, they discover that each couple’s numbers add to a perfect square. What is the largest difference between the two numbers for any couple?
 A. 5 B. 7 C. 10 D. 12 E. 14

7. Let \(r, s, \) and \(t \) be nonnegative integers. How many such triples \((r, s, t)\) satisfy the system \[
\begin{cases}
rs + t = 14 \\
r + st = 13
\end{cases}
\]?
 A. 2 B. 3 C. 4 D. 5 E. 6

8. The average of any 17 consecutive perfect square integers is always \(k \) greater than a perfect square. If \(k = 2m \), where \(m \) is odd, find \(r \).
 A. 0 B. 1 C. 2 D. 3 E. 4